YANG SHI

 $(215) \cdot 588 \cdot 7136 \diamond SHIY4@UCI.EDU \diamond YANGSHI@CALTECH.EDU$

Github: https://github.com/shiyangdaisy23

Personal website: http://shiyangdaisy1.wixsite.com/yangshi

CAREER OBJECTIVE

Fifth year Ph.D. candidate in the department of EECS at UC Irvine seeking opportunities in machine learning research. Working in TensorLab (located at Caltech), advised by Anima Anandkumar. I am expecting to graduate in June, 2019.

EDUCATION

University of California, Irvine

Ph.D. in Electrical Engineering

University of Pennsylvania

M.S. in Electrical Engineering

Nanjing University of Science and Technology

B.S. in Electrical Engineering

Overall GPA: 4.00/4.00

June 2012

Overall GPA: 91/100

PUBLICATIONS

Tensor vs Matrix Methods:Robust Tensor Decomposition under Block Sparse Perturbations

Animashree Anandkumar, Prateek Jain, Yang Shi, U.N. Niranjan

AISTATS 2016

Tensor Contractions with Extended BLAS Kernel on CPU and GPU

Yang Shi, U.N. Niranjan, Animashree Anandkumar, Cris Cecka

HiPC~2016

ECCV 2018

Amazon

Compact Tensor Pooling for Visual Question Answering

Yang Shi, Tommaso Furlanello, Animashree Anandkumar

Question Type Guided Attention in Visual Question Answering

_

Yang Shi, Tommaso Furlanello, Sheng Zha, Animashree Anandkumar

Multi-dimensional Count Sketch: Dimension Reduction That Retains Efficient Tensor Operations

Yang Shi, Animashree Anandkumar

NIPS 2018 DLT workshop

CVPR 2017 VQA workshop

EXPERIENCE

AWS Deep Learning Project

 $\rm Jan~2017$ - $\rm Dec~2017$

Applied Scientist Intern

- Contributed to MXNet:
 - developed customized operators Count Sketch and FFT/IFFT on GPU platform
 - edited the deep learning notebook(github:mxnet-the-straight-dope)
- Worked on Visual Question Answering:
 - used question type to select different image features
 - applied to 1.6M image-question pairs dataset

Tensor Contraction with Extended BLAS Kernel on CPU and GPU July 2015 - Jan 2016

Lead Developer

UC Irvine

- Efficient and simplified tensor contraction platform with extended BLAS kernel:
 - designed platform specific for one-index 3rd-order tensor contraction
 - avoided out-of-place computation as much as possible
 - outperformed current libraries: BTAS, FTensor, Cyclops and TensorToolbox
 - available in CuBLAS 8.0

Nonconvex Tensor Robust Principle Component Analysis

Oct. 2014 - July 2015 UC Irvine Group Member

- Nonconvex alternating minimization algorithm:

- yielded guaranteed convergence to the globally optimal solution under certain condition
- applied to video denoising

ADDITIONAL EXPERIENCE

Visiting scholar at Caltech

Jan 2018 - Now

Caltech

UC Irvine

Visiting scholar

· Estimate tensor operations using dimension reduction techniques

Stock Quantization and Analysis

July 2016 - August 2016

Researcher Sinolink Securities

· Find best stock combination from stock pool

Streaming Robust Principle Component Analysis

June 2016 - July 2016

Group Member

· Consider robust PCA in streaming setting with sparse constraints

Leak Detection in Water System Using a Higher Order CRF Model March 2016 - May 2016 UC Irvine Group Member

· Model the water network and predict leakage in multi-positions

Tensor Decomposition Applications

Oct. 2014 - Feb. 2015

Lead Developer UC Irvine

· Solve topic modeling, HMM and ICA models using Method of Moment

Network Quality Analysis

July 2014 - Aug. 2014

Network Engineer China Mobile Research Institute (Beijing)

Investigation of Different Kinds of Supercapacitors

Jan. 2013 - May 2014

University of Pennsylvania Investigation of Lumped Element Equivalent Circuit for Distributed Microwave Circuit

Mar. 2012 - May 2012

Group Member

Lead Developer Technical University of Munich

TECHNICAL STRENGTHS

Python, C++ Computer Languages

Tools/Platforms Cuda, Matlab, Emacs, Jupyter Notebook

Deep Learning Platform MXNet, Pytorch

RELEVANT COURSE WORK

Large Scale Machine Learning Machine Learning

Deep Learning and Neural Networks Random Process Statistical Learning Theory Probabilistic Learning

Graphical Models Detection and Estimation Theory

Graph Algorithm Linear System Theory

Introduction to Optimization Theory Introduction to Networks and Protocols

Digital Communication System Digital Integrated Circuits and VLSI-Fundamentals